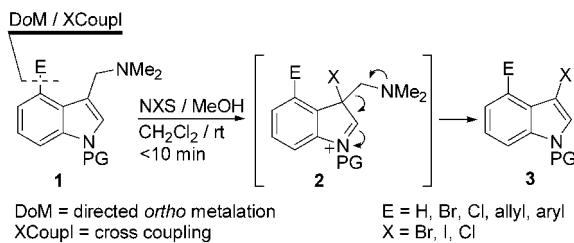


Rapid Route to 3,4-Substituted Indoles via a Directed Ortho Metalation–Retro-Mannich Sequence

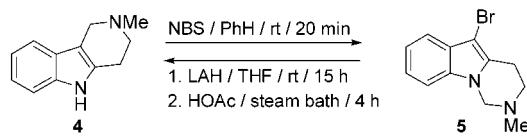

Brian Chauder, Andrew Larkin, and Victor Snieckus*

Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada

snieckus@chem.queensu.ca

Received December 30, 2001

ABSTRACT



In the presence of NXS (X = Br, I, Cl), gramine derivatives 1, derived by combined directed *ortho* metalation (DoM)–cross-coupling sequences, rapidly undergo retro-Mannich fragmentation (2) to afford 3-halo indoles 3 in 37–88% yields. A conceptually new methodology to diverse 3,4-substituted indoles (10, 11, 13) is thereby introduced.

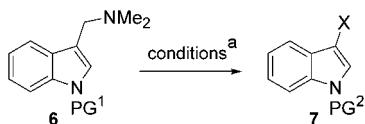
We report a new and unique route to 3,4-substituted indoles 3 based on a combined metalation and retro-Mannich sequence, 1 → 3. This route proceeds via a highly regioselective C-4 lithiation of gramine discovered by Iwao¹ and our finding² of some vintage, concerning the interconversion of tetrahydro- γ -carboline 4 and tetrahydropyrimidoindole 5 ring systems that involves, in part, a Br⁺-initiated retro-Mannich fragmentation (Scheme 1).

specifically polyfunctionalized benzenes.³ Among the few methods for direct C-4 substitution, the Iwao procedure¹ is exceptional in its brevity and scope. The DoM–retro-Mannich protocol delineated herein demonstrates rapid access to 3,4-differentially halogenated (Table 2, entries 1 and 2), 4-substituted 3-haloindoles (entries 4 and 5) and, via transition metal catalyzed coupling processes, interesting C–C bond construction motifs (Scheme 2 and Table 3). In view of the considerable effort needed to obtain valuable 4-substituted indoles,⁴ the present methodology provides a short and general route with potential application for the preparation of less accessible bioactive indoles and tryptamines and new conceptual tools for viewing indole natural product synthetic targets.

Scheme 1

Methods for de novo C-4-substituted indole ring construction (inter alia, Fischer, Madelung, and Reissert) suffer from regioisomer production or dependency on synthesis of

(3) Gribble, G. W. *J. Chem. Soc., Perkin Trans. 1* **2000**, 1045 and refs cited therein. For Pd-catalyzed heteroannulation methods, see: Soederberg, B. C.; Schriver, J. A. *J. Org. Chem.* **1997**, 62, 5838 and a comprehensive list of refs therein.

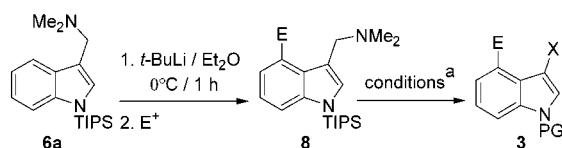

(4) (a) Kozikowski, A. P. *Heterocycles* **1981**, 16, 267. (b) Hollins, R. A.; Colnago, L. A.; Salim, V. M.; Seidl, M. C. *J. Heterocycl. Chem.* **1979**, 16, 993. (c) Tidwell, J. H.; Buchwald, S. L. *J. Am. Chem. Soc.* **1994**, 116, 11797 and refs cited therein. (d) Somei, M.; Amari, H.; Makita, Y. *Chem. Pharm. Bull. Jpn.* **1986**, 34, 3971 and refs cited therein. (e) Hegedus, L. *Angew. Chem., Int. Ed. Engl.* **1988**, 27, 1113. (f) Brown, M. A.; Kerr, M. A. *Tetrahedron Lett.* **2001**, 42, 983.

(1) Iwao, M. *Heterocycles* **1993**, 36, 29.

(2) Bhandari, K. S.; Snieckus, V. *Synthesis* **1971**, 327.

In the test experiment of the retro-Mannich fragmentation, *N*-TIPS gramine, when subjected to NBS, afforded, within minutes, the 3-bromo derivative in essentially quantitative yield (Table 1, entry 1). Similarly, the corresponding

Table 1. 3-Haloindoless **7** by Retro-Mannich Fragmentation of Gramine **6**



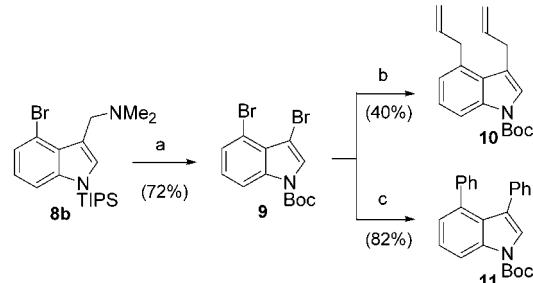
entry	6	PG ¹	conditions ^a	7	X	PG ²	yield (%) ^b
1	6a	TIPS	a	7a	Br	TIPS	98
2	6a	TIPS	b	7b	Cl	TIPS	73
3	6b	H	c, d	7c	I	Boc	83–90
4	6b	H	c, e	7d	I	SO ₂ Ph	78
5	6c	Boc	f	7e	CHO	Boc	76

^a (a) NBS/CH₂Cl₂/MeOH/rt/2 min; (b) NCS/CH₂Cl₂/MeOH/rt/15 min; (c) NIS/MeOH/0 °C/5 min; (d) (Boc)₂O/Et₃N/catalytic DMAP/CH₂Cl₂/rt/15 min; (e) PhSO₂Cl/NaOH/catalytic Bu₄NBr/PhMe/rt/30 min; (f) 2 equiv NBS/catalytic AIBN/py/CH₂Cl₂/reflux/10 min. ^b Isolated yields after chromatography or crystallization.

3-chloroindole was prepared via reaction with NCS (entry 2). Reaction of *N*-TIPS gramine with NIS, however, resulted only in decomposition products. This is not entirely surprising since 3-iodoindoless are reported to be unstable.⁵

Table 2. Synthesis of 3,4-Disubstituted Indoless **3** via DoM–Retro-Mannich Sequence

entry	8	E ⁺	E	yield (%) ^b	3 , yield (%) ^b	
					3a , X = Br	3b , X = I
1	8a	Cl ₃ C–CCl ₃	Cl	64	80	37
2	8b	BrCH ₂ CH ₂ Br	Br	56	84	88
3	8c	(TMSO) ₂	OH	66	decomp	decomp
4	8d	DMF	CHO	51	79	42
5	8e	TMSCl	TMS	62	83	63

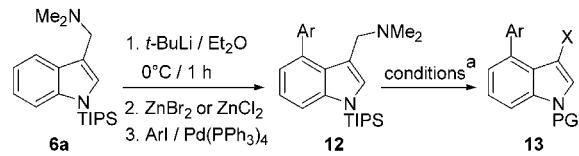

^a Bromination: NBS/CH₂Cl₂/MeOH/rt/2 min. Iodination: (1) TBAF/THF/rt/10 min; (2) NIS/MeOH/0 °C/5 min; (3) (Boc)₂O/Et₃N/catalytic DMAP/CH₂Cl₂/rt/15 min. ^b Isolated yields after chromatography.

Nevertheless, treatment of *unprotected* gramine with NIS at 0 °C resulted in smooth conversion to 3-iodoindole, which, upon immediate N-protection, gave the *N*-Boc (entry 3) and

(5) (a) Saulnier, M. G.; Gribble, G. W. *J. Org. Chem.* **1982**, *47*, 757. (b) Saulnier, M. G.; Gribble, G. W. *J. Org. Chem.* **1983**, *48*, 2690.

N-SO₂Ph (entry 4) derivatives in high yields. This route uses inexpensive gramine as a starting material, requires no special precautions, tolerating moisture and oxygen, and compares favorably with established routes to 3-haloindoless.⁶ In an unexpected but potentially useful observation, treatment of *N*-Boc gramine with NBS or NIS yielded the 3-formyl indole as the sole product, presumably via a radical mechanism (entry 5).⁷ Reaction of **6a** with other electrophilic reagents, including TMSOTf, Tf₂O, selectfluor, ICl, Br₂, I₂, Ph-(OCOCF₃)₂I₂, and AlCl₃/AcCl, gave either no reaction or a complex mixture of products.

Scheme 2^a



^a Key: (a) (1) NBS/MeOH/CH₂Cl₂/rt/2 min; (2) TBAF/THF/rt/10 min; (3) (Boc)₂O/catalytic DMAP/Et₃N/CH₂Cl₂/rt/30 min. (b) Bu₃SnCH₂CH=CH₂/Pd(PPh₃)₄/PhMe/reflux/2 h. (c) PhB(OH)₂/DME/aqueous Ba(OH)₂/Pd(PPh₃)₄/reflux/15 min.

To connect the retro-Mannich process to the DoM reaction, a series of grammes **8** with C-4 carbon, silicon, oxygen, and halogen functional groups were prepared from **6a** as described by Iwao (Table 2).¹ These were subjected to bromination and iodination conditions to afford, with one exception (entry 3), 3,4-disubstituted indoless **3a** and **3b** in good overall yields.

For the development of new C-3 and C-4 C–C bond constructs, 4-bromogramine derivative **8b** was treated with

Table 3. Synthesis of 3,4-disubstituted Indoless **13** via Negishi–Retro-Mannich Sequence

entry	12	Ar	yield (%) ^b	13 , yield (%) ^b	
				13a , X = Br	13b , X = I
1	12a	<i>o</i> -tol	22	81	68
2	12b	Ph	53		24
3	12c	3-py	34	81	

^a Bromination: NBS/CH₂Cl₂/MeOH/rt/2 min. Iodination: (1) TBAF/THF/rt/10 min; (2) NIS/MeOH/0 °C/5 min; (3) (Boc)₂O/Et₃N/catalytic DMAP/CH₂Cl₂/rt/15 min. ^b Isolated yields after chromatography.

NBS followed by desilylation and *N*-Boc protection to give the 3,4-dibromo indole **9** in good overall yield (Scheme 2). Subjection of **9** to prototype Stille and Suzuki–Miyaura reactions led to the diallyl **10** and diphenyl **11**⁸ derivatives, respectively, in modest yields.

The Negishi cross-coupling protocol may also be linked to the indole retro-Mannich reaction (Table 3). Thus, C-4 metalation of *N*-TIPS gramine **6a** with *t*-BuLi followed by treatment with anhydrous zinc bromide or zinc chloride and aryl halides under Pd-catalysis afforded 4-aryl derivatives **12** in low yields. Attempts to improve the yields by vigorously degassing the system were not successful. Nonetheless, treatment of **12** according to the retro-Mannich–bromination and -iodination protocols provided 3-halo-4-aryl

indoles **13a** and **13b**, substrates for potential further cross-coupling chemistry.

In conclusion, a rapid entry into 3,4-difunctionalized indoles **3**, especially dihalogenated systems, via a DoM–retro-Mannich protocol has been established. Combination with cross-coupling regimens allows ready access to new indoles **10**, **11**, and **13a,b**. The overall methodology may suggest new strategies for bioactive molecule and alkaloid construction.

Acknowledgment. We are grateful to NSERC Canada for support under the Research Grant program. B.C. is a recipient of a Queen's Graduate Fellowship (QGF), 1999–2000.

Supporting Information Available: Experimental procedures for the metalation of **6a** and for the preparation of **3**, **7**, and **10–13** and characterization data for **7**, **8a**, **3a,b** (Table 2, entry 1), **10**, **11**, **12c**, and **13a** (Table 3, entry 3). This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL017310M

(6) For 3-bromoindoles, see: Amat, M.; Sathyanarayana, S.; Hadida, S.; Bosch, J. *Heterocycles* **1996**, *43*, 1713 and refs cited therein. For 3-iodoindoles, see: Benhida, R.; Blanchard, P.; Fourrey, J.-L. *Tetrahedron Lett.* **1998**, *39*, 6849 and refs cited therein.

(7) For examples of debenzylation of amides using NBS/AIBN, see: Baker, S. R.; Parsons, A. F.; Wilson, M. *Tetrahedron Lett.* **1998**, *39*, 331.

(8) Structurally reminiscent of stereochemically interesting 1,8-substituted naphthalenes, see: Lunazzi, L.; Mazzanti, A.; Alvarez, A. M. *J. Org. Chem.* **2000**, *65*, 3200.